一文了解超声波金属焊接技术
发布日期:2025-01-08 点击:0
定义:
超声波金属焊接利用高频振动波传递到需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合。
原理:
超声波金属焊接是利用超声频率的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将机械能转变为内能、形变能及有限的温升.两母材达到再结晶温度下发生的固相焊接.
在超声焊接过程中,换能器把高频电信号转化为超声振动信号,高频振动通过焊接工具头传递到待焊金属表面,界面金属氧化膜在一定的压力和超声振动的剧烈摩擦作用下破碎,界面洁净金属接触并在摩擦和超声软化的共同作用下,进一步产生塑性流动和扩散使连接面积逐渐增大最终形成可靠的连接。
系统组成:一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。
超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将需要焊接的部件区域熔化。
焊接过程:
过渡阶段为清除焊件表面膜和氧化物的短暂过程,稳定阶段为界面产生相互扩散并使相互扩散稳定的过程。在过渡阶段,焊件表面氧化物膜由于强烈磨擦作用破碎,此时磨擦为主要热源,工件温度升高使工件材料屈服强度降低,有利于工件表面氧化膜破碎及发生塑性变形,对接头形成有重要作用。
稳定阶段,金属接触表面变得平滑后摩擦作用减弱,热量由于产生塑性变形而在焊接界面聚集,在此过程中的热量是由工件的塑性变形过程产生,工具头施加的压力致使界面原子之间产生作用力而形成的金属连接过程。
工艺参数的影响:
超声金属焊接过程的主要工艺参数有焊接压力、焊接能量/时间、工具头振幅和工具、头齿纹与尺寸等。
(1)压力的影响
焊接压力对焊接接头质量的影响显著,焊接接头强度随压力的增大先增加后减小。焊接压力会改变焊接界面的滑动阻力,焊接压力较小会导致界面的滑动阻力较小,使摩擦产生的能量不足以让界面形成有效连接;焊接压力过大导致工具头下压过深,焊接界面金属产生相互咬合而影响了界面的相对运动,阻碍界面金属进一步连接,导致焊接接头的力学性能变差。因此,合适的焊接压力参数对焊接质量有决定性。
(2)时间的影响
焊接时间直接影响了焊接过程中能量的输入,对焊接效果有着直接的影响。焊接时间过短,输入能量不足,由于没有充分的摩擦,难以形成有效的焊点;随着焊接时间的增加,相互摩擦引起温度升高,工件材料开始软化,焊接区域界面氧化膜破损及塑性变形,能形成较好的连接;当焊接时间进一步延长,焊头容易在工件表面形成较深的痕迹,对焊接效果产生不利的影响,此外,过长的焊接诶时间易导致焊头与被焊工件的粘结;
(3)振幅的影响
在下压力的作用下,焊头压紧被焊工件到焊座上,焊头带动上工件在焊接区域的振动距离被称作焊接振幅。对振动幅度的要求通常是根据被焊接材料的类型和状况确定的,并且通过焊接设备的发生器、换能器和上焊头协同工作对每个焊接周期实施精确控制。超声波焊接过程中工件与工件形成的振动系统,振幅直接影响工件界面振动的瞬时速度,最终影响摩擦生热及塑性变形,对焊接质量造成影响。
(4)焊头的影响
焊头是超声波金属焊接的关键组成部分,焊接过程中,焊头在压力作用下要抓紧被焊工件,这样,超声波焊机产生的机械振动才能传递给被焊工件界面以形成固相连接。焊头面积不同,会导致焊接过程中焊接压力的分布不同,即连接界面的具有不同的应力,使焊接过程中摩擦力不同,从而使焊接过程中摩擦产热量不同,导致焊接过程中工件温度不同,最终影响接头质量。而焊头花纹齿深则决定焊头花纹嵌入工件表面的难易程度,也直接影响工件表面压痕深度,间接影响焊接过程中工件温度,对接头质量造成影响。因此,焊头形貌及尺寸对接头质量有非常关键的作用。
焊头面积相同时,矩形焊头比圆形焊头产生的塑性变形程度强烈;焊头形状相同时,面积大的焊头能使焊接区塑性变形程度更强烈。
焊头面积相同时,圆形焊头更容易将焊头下方的工件材料挤出,形成更深的压痕;焊头形状相同时, 面积小的焊头使工件表面接触区域压强较大,从而形成更深的压痕。